{-# OPTIONS --cubical --safe --exact-split #-}
module Cubical.Structures.Set.CMon.QFreeMon where
open import Cubical.Core.Everything
open import Cubical.Foundations.Everything
open import Cubical.HITs.PropositionalTruncation as P
open import Cubical.HITs.SetQuotients as Q
open import Cubical.Data.List as L
open import Cubical.Relation.Binary
import Cubical.Structures.Set.Mon.Desc as M
import Cubical.Structures.Set.CMon.Desc as M
import Cubical.Structures.Free as F
open import Cubical.Structures.Sig
open import Cubical.Structures.Str public
open import Cubical.Structures.Tree
open import Cubical.Structures.Eq
open import Cubical.Structures.Arity hiding (_/_)
open import Cubical.Relation.Nullary hiding (⟪_⟫)
open F.Definition M.MonSig M.MonEqSig M.MonSEq
open F.Definition.Free
module _ {ℓ ℓ' : Level} (freeMon : Free ℓ ℓ' 2) where
private
ℱ : Type ℓ -> Type ℓ
ℱ A = freeMon .F A
PRel : Type ℓ -> Type (ℓ-max ℓ (ℓ-suc ℓ'))
PRel A = Rel (ℱ A) (ℱ A) ℓ'
record isPermRel {A : Type ℓ} (R : PRel A) : Type (ℓ-max ℓ (ℓ-suc ℓ')) where
constructor permRel
infix 3 _≈_
_≈_ : Rel (ℱ A) (ℱ A) ℓ' ; _≈_ = R
infixr 10 _⊕_
_⊕_ : ℱ A -> ℱ A -> ℱ A
a ⊕ b = freeMon .α (M.`⊕ , ⟪ a ⨾ b ⟫)
module R = BinaryRelation R
field
isEquivRel : R.isEquivRel
isCongruence : {a b c d : ℱ A}
-> a ≈ b -> c ≈ d
-> a ⊕ c ≈ b ⊕ d
isCommutative : {a b : ℱ A}
-> a ⊕ b ≈ b ⊕ a
resp-♯ : {a b : ℱ A} {𝔜 : struct ℓ' M.MonSig} {isSet𝔜 : isSet (𝔜 .car)} (𝔜-cmon : 𝔜 ⊨ M.CMonSEq)
-> (f : A -> 𝔜 .car)
-> a ≈ b
-> let f♯ = ext freeMon isSet𝔜 (M.cmonSatMon 𝔜-cmon) f .fst in f♯ a ≡ f♯ b
refl≈ = isEquivRel .R.isEquivRel.reflexive
trans≈ = isEquivRel .R.isEquivRel.transitive
cong≈ = isCongruence
comm≈ = isCommutative
subst≈-left : {a b c : ℱ A} -> a ≡ b -> a ≈ c -> b ≈ c
subst≈-left {c = c} = subst (_≈ c)
subst≈-right : {a b c : ℱ A} -> b ≡ c -> a ≈ b -> a ≈ c
subst≈-right {a = a} = subst (a ≈_)
subst≈ : {a b c d : ℱ A} -> a ≡ b -> c ≡ d -> a ≈ c -> b ≈ d
subst≈ {a} {b} {c} {d} p q r = trans≈ b c d (subst≈-left p r) (subst≈-right q (refl≈ c))
PermRelation : Type ℓ -> Type (ℓ-max ℓ (ℓ-suc ℓ'))
PermRelation A = Σ (PRel A) isPermRel
module QFreeMon {ℓr ℓB} {freeMon : Free ℓr ℓB 2} (A : Type ℓr) ((R , isPermRelR) : PermRelation freeMon A) where
private
ℱ = freeMon .F A
open isPermRel isPermRelR
𝒬 : Type (ℓ-max ℓr ℓB)
𝒬 = ℱ / _≈_
𝔉 : M.MonStruct
𝔉 = < ℱ , freeMon .α >
module 𝔉 = M.MonSEq 𝔉 (freeMon .sat)
e : ℱ
e = 𝔉.e
e/ : 𝒬
e/ = Q.[ e ]
η/ : A -> 𝒬
η/ x = Q.[ freeMon .η x ]
_⊕/_ : 𝒬 -> 𝒬 -> 𝒬
_⊕/_ = Q.rec2 squash/
(\a b -> Q.[ a ⊕ b ])
(\a b c r -> eq/ (a ⊕ c) (b ⊕ c) (cong≈ r (refl≈ c)))
(\a b c r -> eq/ (a ⊕ b) (a ⊕ c) (cong≈ (refl≈ a) r))
⊕-unitl : (a : 𝒬) -> e/ ⊕/ a ≡ a
⊕-unitl = Q.elimProp
(\_ -> squash/ _ _)
(\a -> eq/ (e ⊕ a) a (subst≈-right (𝔉.unitl a) (refl≈ (e ⊕ a))))
⊕-unitr : (a : 𝒬) -> a ⊕/ e/ ≡ a
⊕-unitr = Q.elimProp
(\_ -> squash/ _ _)
(\a -> eq/ (a ⊕ e) a (subst≈-right (𝔉.unitr a) (refl≈ (a ⊕ e))))
⊕-assocr : (a b c : 𝒬) -> (a ⊕/ b) ⊕/ c ≡ a ⊕/ (b ⊕/ c)
⊕-assocr = Q.elimProp
(\_ -> isPropΠ (\_ -> isPropΠ (\_ -> squash/ _ _)))
(\a -> elimProp
(\_ -> isPropΠ (\_ -> squash/ _ _))
(\b -> elimProp
(\_ -> squash/ _ _)
(\c -> eq/ ((a ⊕ b) ⊕ c) (a ⊕ (b ⊕ c)) (subst≈-right (𝔉.assocr a b c) (refl≈ ((a ⊕ b) ⊕ c))))))
⊕-comm : (a b : 𝒬) -> a ⊕/ b ≡ b ⊕/ a
⊕-comm = elimProp
(\_ -> isPropΠ (\_ -> squash/ _ _))
(\a -> elimProp
(\_ -> squash/ _ _)
(\b -> eq/ (a ⊕ b) (b ⊕ a) comm≈))
qFreeMon-α : sig M.MonSig 𝒬 -> 𝒬
qFreeMon-α (M.`e , i) = Q.[ e ]
qFreeMon-α (M.`⊕ , i) = i fzero ⊕/ i fone
qFreeMon-sat : < 𝒬 , qFreeMon-α > ⊨ M.CMonSEq
qFreeMon-sat (M.`mon M.`unitl) ρ = ⊕-unitl (ρ fzero)
qFreeMon-sat (M.`mon M.`unitr) ρ = ⊕-unitr (ρ fzero)
qFreeMon-sat (M.`mon M.`assocr) ρ = ⊕-assocr (ρ fzero) (ρ fone) (ρ ftwo)
qFreeMon-sat M.`comm ρ = ⊕-comm (ρ fzero) (ρ fone)
private
𝔛 : M.CMonStruct
𝔛 = < 𝒬 , qFreeMon-α >
module 𝔛 = M.CMonSEq 𝔛 qFreeMon-sat
[_]-isMonHom : structHom 𝔉 𝔛
fst [_]-isMonHom = Q.[_]
snd [_]-isMonHom M.`e i = cong _/_.[_] 𝔉.e-eta
snd [_]-isMonHom M.`⊕ i =
𝔛 .alg (M.`⊕ , (λ x -> Q.[ i x ])) ≡⟨ 𝔛.⊕-eta i Q.[_] ⟩
Q.[ freeMon .α (M.`⊕ , _) ] ≡⟨ cong (λ z -> Q.[_] {R = _≈_} (freeMon .α (M.`⊕ , z))) (lookup2≡i i) ⟩
Q.[ freeMon .α (M.`⊕ , i) ] ∎
module IsFree {𝔜 : struct ℓB M.MonSig} (isSet𝔜 : isSet (𝔜 .car)) (𝔜-cmon : 𝔜 ⊨ M.CMonSEq) where
module 𝔜 = M.CMonSEq 𝔜 𝔜-cmon
module _ (f : A -> 𝔜 .car) where
f♯ : structHom 𝔉 𝔜
f♯ = ext (freeMon) isSet𝔜 (M.cmonSatMon 𝔜-cmon) f
_♯ : 𝒬 -> 𝔜 .car
_♯ = Q.rec isSet𝔜 (f♯ .fst) (\_ _ -> resp-♯ 𝔜-cmon f)
private
♯-++ : ∀ xs ys -> (xs ⊕/ ys) ♯ ≡ (xs ♯) 𝔜.⊕ (ys ♯)
♯-++ =
elimProp (λ _ -> isPropΠ λ _ -> isSet𝔜 _ _) λ xs ->
elimProp (λ _ -> isSet𝔜 _ _) λ ys ->
f♯ .fst (xs ⊕ ys) ≡⟨ sym (f♯ .snd M.`⊕ (lookup (xs ∷ ys ∷ []))) ⟩
_ ≡⟨ 𝔜.⊕-eta (lookup (xs ∷ ys ∷ [])) (f♯ .fst) ⟩
_ ∎
♯-isMonHom : structHom 𝔛 𝔜
fst ♯-isMonHom = _♯
snd ♯-isMonHom M.`e i = 𝔜.e-eta ∙ f♯ .snd M.`e (lookup [])
snd ♯-isMonHom M.`⊕ i = 𝔜.⊕-eta i _♯ ∙ sym (♯-++ (i fzero) (i fone))
private
qFreeMonEquivLemma : (g : structHom 𝔛 𝔜) (x : 𝔛 .car) -> g .fst x ≡ ((g .fst ∘ η/) ♯) x
qFreeMonEquivLemma g = elimProp (λ _ -> isSet𝔜 _ _) λ x i -> lemma (~ i) x
where
lemma : (f♯ (((g .fst) ∘ Q.[_]) ∘ freeMon .η)) .fst ≡ (g .fst) ∘ Q.[_]
lemma = cong fst (ext-β (freeMon) isSet𝔜 (M.cmonSatMon 𝔜-cmon) (structHom∘ 𝔉 𝔛 𝔜 g [_]-isMonHom))
qFreeMonEquiv : structHom 𝔛 𝔜 ≃ (A -> 𝔜 .car)
qFreeMonEquiv =
isoToEquiv
( iso
(λ g -> g .fst ∘ η/)
♯-isMonHom
(ext-η (freeMon) isSet𝔜 (M.cmonSatMon 𝔜-cmon))
(λ g -> sym (structHom≡ 𝔛 𝔜 g (♯-isMonHom (g .fst ∘ η/)) isSet𝔜 (funExt (qFreeMonEquivLemma g))))
)
module QFreeMonDef = F.Definition M.MonSig M.CMonEqSig M.CMonSEq
qFreeMonDef : ∀ {ℓ : Level} {freeMon : Free ℓ ℓ 2} (R : {A : Type ℓ} -> PermRelation freeMon A) -> QFreeMonDef.Free ℓ ℓ 2
F (qFreeMonDef R) A = QFreeMon.𝒬 A R
η (qFreeMonDef R) = QFreeMon.η/ _ R
α (qFreeMonDef R) = QFreeMon.qFreeMon-α _ R
sat (qFreeMonDef R) = QFreeMon.qFreeMon-sat _ R
isFree (qFreeMonDef R) isSet𝔜 𝔜-cmon = (QFreeMon.IsFree.qFreeMonEquiv _ R isSet𝔜 𝔜-cmon) .snd