{-# OPTIONS --cubical --exact-split #-}
module Cubical.Structures.Gpd.SMon.SList where
open import Cubical.Foundations.Everything
open import Cubical.Data.Sigma
open import Cubical.Structures.Prelude
open import Cubical.Structures.Prelude.TODO
infixr 20 _∷_
data SList {a} (A : Type a) : Type a where
[] : SList A
_∷_ : (a : A) -> (as : SList A) -> SList A
swap : (a b : A) (cs : SList A)
-> a ∷ b ∷ cs ≡ b ∷ a ∷ cs
swap⁻¹ : (a b : A) (cs : SList A)
-> swap a b cs ≡ sym (swap b a cs)
hexagon– : (a b c : A) (cs : SList A)
-> a ∷ b ∷ c ∷ cs ≡ c ∷ b ∷ a ∷ cs
hexagon↑ : (a b c : A) (cs : SList A)
-> Square (\i -> b ∷ swap a c cs i) (hexagon– a b c cs)
(swap b a (c ∷ cs)) (swap b c (a ∷ cs))
hexagon↓ : (a b c : A) (cs : SList A)
-> Square (hexagon– a b c cs) (swap a c (b ∷ cs))
(\i -> a ∷ swap b c cs i) (\i -> c ∷ swap b a cs i)
isGpdSList : isGroupoid (SList A)
pattern [_] a = a ∷ []
private
variable
ℓ : Level
A : Type ℓ
swap² : (a b : A) (cs : SList A)
-> swap a b cs ∙ swap b a cs ≡ refl
swap² a b cs = cong (_∙ swap b a cs) (swap⁻¹ a b cs) ∙ lCancel (swap b a cs)
hexagon : (a b c : A) (cs : SList A)
-> (swap a b (c ∷ cs) ∙ cong (b ∷_) (swap a c cs) ∙ swap b c (a ∷ cs))
≡ cong (a ∷_) (swap b c cs) ∙ swap a c (b ∷ cs) ∙ cong (c ∷_) (swap a b cs)
hexagon a b c cs =
let hex-up = PathP→compPathL (hexagon↑ a b c cs)
hex-dn = PathP→compPathR (hexagon↓ a b c cs)
in
swap a b (c ∷ cs) ∙ cong (b ∷_) (swap a c cs) ∙ swap b c (a ∷ cs)
≡⟨ cong (_∙ cong (b ∷_) (swap a c cs) ∙ swap b c (a ∷ cs)) (swap⁻¹ a b (c ∷ cs)) ⟩
sym (swap b a (c ∷ cs)) ∙ cong (b ∷_) (swap a c cs) ∙ swap b c (a ∷ cs)
≡⟨ hex-up ⟩
hexagon– a b c cs
≡⟨ hex-dn ⟩
cong (a ∷_) (swap b c cs) ∙ swap a c (b ∷ cs) ∙ cong (c ∷_) (sym (swap b a cs))
≡⟨ assoc (cong (a ∷_) (swap b c cs)) (swap a c (b ∷ cs)) (cong (c ∷_) (sym (swap b a cs))) ⟩
(cong (a ∷_) (swap b c cs) ∙ swap a c (b ∷ cs)) ∙ cong (c ∷_) (sym (swap b a cs))
≡⟨ cong ((cong (a ∷_) (swap b c cs) ∙ swap a c (b ∷ cs)) ∙_) (cong (cong (c ∷_)) (sym (swap⁻¹ a b cs))) ⟩
(cong (a ∷_) (swap b c cs) ∙ swap a c (b ∷ cs)) ∙ cong (c ∷_) (swap a b cs)
≡⟨ sym (assoc (cong (a ∷_) (swap b c cs)) (swap a c (b ∷ cs)) (cong (c ∷_) (swap a b cs))) ⟩
cong (a ∷_) (swap b c cs) ∙ swap a c (b ∷ cs) ∙ cong (c ∷_) (swap a b cs)
∎
_++_ : SList A -> SList A -> SList A
[] ++ bs = bs
(a ∷ as) ++ bs = a ∷ (as ++ bs)
swap a b as i ++ bs = swap a b (as ++ bs) i
swap⁻¹ a b as i j ++ bs = swap⁻¹ a b (as ++ bs) i j
hexagon– a b c as i ++ bs = hexagon– a b c (as ++ bs) i
hexagon↑ a b c as i j ++ bs = hexagon↑ a b c (as ++ bs) i j
hexagon↓ a b c as i j ++ bs = hexagon↓ a b c (as ++ bs) i j
isGpdSList as cs p q u v i j k ++ bs =
isGpdSList (as ++ bs) (cs ++ bs) (cong (_++ bs) p) (cong (_++ bs) q)
(cong (cong (_++ bs)) u) (cong (cong (_++ bs)) v) i j k
++-unitl : (as : SList A) -> [] ++ as ≡ as
++-unitl as = refl
++-unitr : (as : SList A) -> as ++ [] ≡ as
++-unitr [] = refl
++-unitr (a ∷ as) = cong (a ∷_) (++-unitr as)
++-unitr (swap a b as i) j = swap a b (++-unitr as j) i
++-unitr (swap⁻¹ a b as i j) k = swap⁻¹ a b (++-unitr as k) i j
++-unitr (hexagon– a b c as i) j = hexagon– a b c (++-unitr as j) i
++-unitr (hexagon↑ a b c as i j) k = hexagon↑ a b c (++-unitr as k) i j
++-unitr (hexagon↓ a b c as i j) k = hexagon↓ a b c (++-unitr as k) i j
++-unitr (isGpdSList as cs p q u v i j k) l =
isGpdSList (++-unitr as l) (++-unitr cs l) (cong (\z -> ++-unitr z l) p) (cong (\z -> ++-unitr z l) q)
(cong (cong (\z -> ++-unitr z l)) u) (cong (cong (\z -> ++-unitr z l)) v) i j k
++-assocr : (as bs cs : SList A) -> (as ++ bs) ++ cs ≡ as ++ (bs ++ cs)
++-assocr [] bs cs = refl
++-assocr (a ∷ as) bs cs = cong (a ∷_) (++-assocr as bs cs)
++-assocr (swap a b as i) bs cs j = swap a b (++-assocr as bs cs j) i
++-assocr (swap⁻¹ a b as i j) bs cs k = swap⁻¹ a b (++-assocr as bs cs k) i j
++-assocr (hexagon– a b c as i) bs cs j = hexagon– a b c (++-assocr as bs cs j) i
++-assocr (hexagon↑ a b c as i j) bs cs k = hexagon↑ a b c (++-assocr as bs cs k) i j
++-assocr (hexagon↓ a b c as i j) bs cs k = hexagon↓ a b c (++-assocr as bs cs k) i j
++-assocr (isGpdSList as ds p q u v i j k) bs cs l =
isGpdSList (++-assocr as bs cs l) (++-assocr ds bs cs l) (cong (\z -> ++-assocr z bs cs l) p) (cong (\z -> ++-assocr z bs cs l) q)
(cong (cong (\z -> ++-assocr z bs cs l)) u) (cong (cong (\z -> ++-assocr z bs cs l)) v) i j k
++-∷ : (a : A) (as : SList A) -> a ∷ as ≡ as ++ [ a ]
++-∷ = TODO
++-comm : (as bs : SList A) -> as ++ bs ≡ bs ++ as
++-comm = TODO